

Your Total Water Solutions Provider

# **Review of Functional Servicing Study** Havelock South Development Area

August 13, 2020



# Background

- November 2018 Engage Engineering Ltd. prepared a report entitled "Functional Servicing Study – Havelock South Development Area" for the Township of Havelock-Belmont-Methuen
  - The purpose of the report was to identify the servicing requirements (water, wastewater, and stormwater) for a proposed development in the south part of the Village of Havelock
- August 2020 OCWA was requested to summarize the findings of the Engage Engineering report for Council
  - This presentation presents the findings of the Engage Engineering report. OCWA has not conducted any technical review or verification of data.



# **Report Inputs and Assumptions**

- New Development
  - Phase 1
    - 7 homes
    - Smith Drive
    - Peterborough Housing Development
  - Phase 2
    - 23 homes
    - Extension of Smith Drive
    - Havelock Long-Term Care Facility
  - Phase 3
    - 101 homes and associated roadways
- Drinking water will be provided by three wells with associated treatment systems
- Wastewater will be conveyed to existing Havelock Sewage Treatment Plant



# Overview of Report – Key questions addressed

- Water Servicing
  - Do the wells have enough capacity for new development?
- Sanitary (wastewater) Servicing
  - Does the sewage treatment plant have enough capacity?
- Stormwater Management requirements
  - How do we control stormwater during heavy rainfall?



# Water Servicing

- Current Drinking Water System Capacity
  - 2,333 m<sup>3</sup>/day
- The proposed development is within the current capacity – no modifications required





# Sanitary Servicing (Wastewater)

- Current Capacity of Sewage Treatment Plant
  - 1,200 m<sup>3</sup>/day
- Plant is over capacity with existing conditions
- Plant requires upgrade before building new development





# Sewer Capacity

- Due to higher flows, some sections of sewer will need to be replaced with larger diameter pipes
  - Pipe on County Road 30 between MH 113-MH 116 (260 m) will need to be replaced with 300 mm diameter pipe to accommodate additional flows

| Sewer Location   | Manhole ID                | Capacity Existing Conditions | Capacity Proposed Development |
|------------------|---------------------------|------------------------------|-------------------------------|
| County Road 30   | MH 111 to MH 95           | 2-20%                        | 2-49%                         |
| Ottawa Street    | MH 96 to MH 1             | 10-69%                       | 10-85%                        |
| County Road 30   | MH 113 to MH 116          | 74-98%                       | 90-120%                       |
| Old Norwood Road | MH NOR to MH 116          | 5%                           | 11%                           |
| County Road 30   | MH 116 to MH 122anhold or | 54-65%                       | 67-81%                        |
| County Road 30   | MH 122 to MH 132          | 70%                          | 88%                           |



#### Stormwater Management

- Impervious (paved) surfaces prevent rain from naturally soaking into the ground
- Instead, water runs into storm drains and drainage ditches and often carries debris, chemicals and other pollutants to streams, rivers, lakes, or wetlands
- Can also cause flooding, erosion, turbidity (muddiness), storm and sanitary sewer system overflow



# Proposed Stormwater Management Controls

- The proposed development will increased impervious (paved) area, so stormwater management controls are required
- The report proposes a stormwater management (SWM) pond that will cover an approximate area of 10,000 m<sup>2</sup>
- A SWM pond:
  - Collects rainfall and surface water runoff.
  - Provides erosion and flooding control
  - Improves quality of the water
  - Allows sediment and contaminants to settle out
  - Holds back water in order to release it at a controlled rate during large storms.





# Report in Summary

- Water no work is required
- Wastewater Plant requires upgrade before building new development
- Wastewater sewers some sections of sewer will need to be replaced with larger diameter pipes
- Stormwater stormwater management pond to be constructed



# What's Next?

- 1. Immediate
- Inflow and Infiltration Study Complete (Sewer Technologies)
- 2. Short Term
- Plan expansion of existing STP In Process
- Class Environmental Assessment In Process
- Implement I&I solutions Complete (Sewer Technologies)
- 3. Long Term
- STP and sewer upgrade
- Stormwater management pond



# Inflow and Infiltration Study



# Inflow and Infiltration (I&I)

- Accounts for approx. 50% of average daily wastewater flow
- Study recommended to find source and assess feasibility of creating additional capacity
- Insight from OCWA Operations
  - During dry weather (currently), STP is running at half capacity
  - Wet weather flows (past years) can be up to 2000 m<sup>3</sup>/day



(Source: www.crd.bc.ca)



# Inflow

- Generally consists of storm water
- Sources include: sump pumps, roof leaders, foundation drains, surface drains, manhole covers, cross-connections from storm infrastructure



# Infiltration

- Generally consists of groundwater
- Fluctuates with season (larger volumes in spring)
- Sources include: defective pipes, pipe joints, connections and manhole walls









# I&I Study

- Cost and timeline depends on extent of study
- Can consist of
  - MH inspections
  - SL-RAT (detects blockages)
  - Smoke testing
  - CCTV
- Deliverables
  - Reports with flow analysis
  - Inspection results
  - Next step recommendations
  - "Shovel-ready" projects



# Approximate Cost of I&I Study

• Example from 9 km system in Northern Ontario in 2018

| Activity                           | Approximate Cost |
|------------------------------------|------------------|
| MH Inspections                     | \$20,000         |
| Smoke Testing                      | \$12,000         |
| CCTV Data Collection               | \$85,000         |
| Project Management and Engineering | \$65,000         |
| TOTAL                              | \$182,000        |



# Timeline for I&I Study

- Smoke Testing 5 km / day
- MH Inspections 40 / day
- SL-RAT add 2 minutes per MH
- CCTV depends on condition of pipe (more cleanup and flushing, more time) – 300 m per day



# Sewage Treatment Plant Upgrade



# Sewage Treatment Plant Upgrade

 Capacity limited by SBR – combined capacity of 1,200 m<sup>3</sup>/day





#### Class EA – Schedule C

- A planning and decision making-tool
- Objectives
  - Minimize or avoid adverse environmental effects before they occur
  - Incorporate environmental factors into decision making
- Schedule C Expand the existing sewage treatment plant beyond existing rated capacity



#### EXHIBIT A. 1 KEY FEATURES OF THE MCEA



NOTES:

Actions required during relevant phase

(1) Schedule A, A, B and C projects and Master Plans can also be integrated with the requirements of the Planning Act (See Section A.2.9)

(2) Complete Phases 3 and 4 for any Schedule C projects included in the Master Plan prior to implementation

(3) For Schedule A<sup>+</sup> projects, public to be advised. See Section A.1.2.2.



### **Class EA Process**

- Class EA Schedule C entails:
  - Identify problem
  - Identify alternative solutions
  - Identify alternative design concepts for preferred solution
  - Complete Environmental Study Report
- Requires consultation with public and other stakeholders (First Nations, regulators, etc.)
- Requires review of alternative solutions and their impact on the environment (Archeological investigation, species at risk, etc.)



NOTE: This flow chart is to be read in conjunction with Part A of the Municipal Class EA



# Approximate Upgrade Timeline

- Class EA 8-10 months
- Design 8-10 months\*
- Construction 2 years\*



\*Time may vary depending on complexity of upgrade



# Cost of Plant Upgrade

• For planning purposes only

| Activity                            | Indicative Cost Range <sup>1</sup> |  |
|-------------------------------------|------------------------------------|--|
| Class EA – Schedule C               | \$75,000-\$225,000                 |  |
| Engineering and Design              | \$375,000-\$1,125,000              |  |
| Construction and Equipment Purchase | \$2,000,000-\$5,250,000            |  |
| TOTAL                               | \$2,450,000-\$6,600,000            |  |

1. Class 5 cost estimate with +/- 50% accuracy as per the AACE Cost Estimate Classification System – As Applied In Engineering, Procurement, And Construction For The Process Industries (March 1, 2016).



# Key Decisions for Council

- Start I&I Study
  - Reduce the flow of sewage
  - Review what work has been done
- Planning STP Upgrade and Sewer Upgrade
  - Investigate available funding
  - Develop project plan and timeline
  - Getting ready for "shovel-ready" status



# **Questions?**



Your Total Water Solutions Provider

# Analysis of W&WW Flows Havelock South Development Area

August 24, 2020



#### WW Flow – Last 5 Years





# Summary of WW Flow Data

| Year | Average Daily Flow<br>(m³/day) | Max Daily Flow<br>(m³/day) | % Capacity of STP |
|------|--------------------------------|----------------------------|-------------------|
| 2015 | 688                            | 1,235                      | 57%               |
| 2016 | 741                            | 1,536                      | 62%               |
| 2017 | 959                            | 2,155                      | 80%               |
| 2018 | 1220                           | 2,400                      | 102%              |
| 2019 | 860                            | 1,552                      | 72%               |
| 2020 | 953                            | 1,585                      | 79%               |

- Flows have been increasing year over year
- 2018 was the highest year to date
- Current assumption is that plant is at 75% of rated capacity

















# **Questions?**